PYROLYSIS OF 8-DIAZO-7,9-DIPHENYLCYCLOPENT(A) ACENAPHTHYLENE

P. Balasubramanian and K. Narasimhan Department of Organic Chemistry, University of Madras, A. C. College Campus, Guindy, Madras-600 025, India.

<u>Abstract:</u> Pyrolysis of the title compound in benzene is described.

Although tetraphenyldiazocyclopentadiene and other related diazo compounds undergo various photochemical changes,¹ it is reported to be recovered unchanged when refluxed in benzene.^{2,3} On heating with high boiling solvents like mesitylene, tetraphenyldiazocyclopentadiene gives tetraphenylcyclopentene and nuclear CH insertion products.^{2,3} In contrast, we find 8-diazo-7,9diphenylcyclopent(a) acenaphthylene <u>2</u> undergoes ready thermal decomposition in benzene to give products involving the intermediacy of the corresponding carbene. The increased reactivity of the diazo compound <u>2</u> can probably be attributed to the better delocalization characteristics in the resulting carbene through annelation by the acenaphthylene system.⁴

Acceyclone was converted to the diene <u>1</u> in 80% yield by a modified procedure.⁵ The title compound was prepared by the reaction of the diene with p-toluenesulphonylazide in 94% yield.⁶ When the diazo compound <u>2</u> was refluxed in benzene for 2.5 h, the starting material disappeared and the crude reaction mixture was chromatographed over silica gel. Elution with petrol furnished 5% of 7, 12-diphenylbenzo(k)fluoranthene <u>7</u>. m.p. 279° (Reported 268°)⁷.

 $\begin{array}{l} \lambda \quad (\text{EtOH}): 245nm(\in 58,870), 299nm(\in 40,480), 312nm(\in 68,060), 331nm\\ (\in 12,870), 346nm(\in 10,120), 368nm(\in 8,277), 386nm(\in 17,480), 410nm(\in 18,400);\\ \gamma \quad cm^{-1}(\text{KBr}): 3030, 1595, 1510, 1490, 1440,1430,1380, 1360, 1070, 1035, 830,\\ max \quad 770, 765, 730, 700; \text{ d } (\text{CDCl}_3): 6.67(2\text{H, d, 8Hz}), 7.24-7.77(18\text{H, m}). \text{ The}\\ \text{identity of this compound was confirmed by comparision with known sample,} \end{array}$

685

_7

prepared by addition of benzyne to acecyclone.

Further elution with petrol, followed by purification using preparative TLC furnished yellow crystals of annelated benzocycloheptatriene. $(\underline{6}, 6\%)^8$; m.p. 213'; λ_{max} (CHCl₃): 256nm(\in 24,780), 286nm(\in 19,090), 401nm(\in 14,730); γ_{max}^{cm} (CHCl₃): 2930, 2870, 2820, 1640, 1600, 1440, 1360, 1280, 1240, 1200, 1110, 1080, 1040, 955, 865; δ (CDCl₃): 2.47(t, 2H, 7Hz), 5.73-6.06(d.t, 2H, 7Hz; 10Hz), 6.46(d, 2H, 10Hz), 6.56(d, 2H, 8Hz), 7.23-7.79(m, 14H); m/e 418.

Continued elution with benzene, petrol (1:9) gave an yellow compound ($\underline{4}$, 21%); m.p. 1 $\underline{41}$ -142[•]; λ_{max} (EtOH): 249nm($\underline{6}$ 44,750), 292nm($\underline{6}$ 25,000), 402nm ($\underline{6}$ 20,920); \mathcal{V}_{max}^{cm} (KBr): 3020, 1645, 1600, 1575, 1500, 1445, 1360, 840, 800, 790, 780, 755, 705, 665; $\underline{6}$ (CDCl₃): 4.95-5.09(d, 2H, 12Hz), 5.60-5.83(m, 4H), 7.08-8.00(m, 16H); m/e 418(100%), 341(33%).

One more yellow product 7,8,9-triphenylcyclopent(a) acenaphthylene($\underline{8}$, 34%) was obtained on elution with benzene, petrol (4:6). m.p. 208°; λ_{max} (EtOH): 251nm(\in 41,150), 290nm(\in 28,600), 398nm(\in 23,710); \mathcal{V}_{max}^{cm} (KBr): 3060, 3020, 1580, 1480, 1430, 1345, 1060, 1020, 900, 815, 765, 745, 675; \mathcal{J} (CDCl₃): 5.58(s, 1H), 6.91-7.97(m, 21H); m/e 4)8(100%), 341(57%). On the basis of spectral data the compound was assigned the structure <u>8</u>.

Compound <u>6</u> can arise by thermally allowed 1,5 hydrogen shift from <u>5</u>. Efforts are underway to determine whether the conversion of <u>4</u> to <u>5</u> involves a concerted or radical pathway. The conversion of <u>6</u> to <u>7</u> involves pyrolytic loss of CH_2 probably from the corresponding norcaradiene <u>9</u>.⁹ When a solution of <u>6</u> in chloroform is heated, characteristics peaks due to the structure <u>6</u> disappears in UV and the spectrum now displays peaks normally seen for <u>7</u>.

The NMR spectra of the compounds $\underline{6}$ and $\underline{7}$ show a high field peak integrating for two protons around $\underline{6}$ 6.60. It is noted that the upfield shift occurs only when the acenaphthylene portion is fused to six membered ring.¹⁰ This signal probably can be attributed to H_a, H_b protons in the acenaphthylene shielded by two phenyl rings. When acenaphthylene portion is fused to five membered ring as in the case of acecyclone, diene <u>1</u>, diazo <u>2</u>, spiro compound <u>4</u>, and <u>8</u> this upfield shift is not seen. Models show that in these cases, phenyls are pushed further away.

Acknowledgement:

We thank Prof. S. Swaminathan for encouragement and support and Dr. K. Nagarajan, Dr. S. Selvavinayagam, CIBA Research Centre, Bombay for microanalysis and spectra. P. B is thankful to UGC, New Delhi for the award of Junior Research Fellowship.

References:

- "The Chemistry of diazonium and diazo groups", Edited by Saul Patai, John Wiley & Sons, New York (1978).
- 2. D. Lloyd and F. Wasson, J. Chem. Soc. (C); 408,(1966).
- 3. H. Duerr and G. Sheppers, Liebigs Ann. Chem; 734, 141 (1970).
- 4. K. Yamamoto, M. Morioka and I, Murata, Tetrahedron Lett; 23, 3009 (1975).
- 5. P. Balasubramanian and K. Narasimhan, submitted for publication.
- 6. M. Regitz and A. Liedhegener, Tetrahedron; 23, 2701 (1967).
- 7. A. J. Bhattcharjee and S. N. Mandal; Curr. Sci; <u>41</u>, 217 (1972).
- 8. All the new compounds gave the satisfactory analysis value.
- 9. V. Rauten Strauch, H.-J. Scholl and E. Vogel, Angew. Chem. Internat. Edn; <u>7</u>, 288 (1968).(For similar type of pyrolytic fragmentation)
- 10. The NMR study of other similar six membered compounds are under progress.

(Received in UK 19 November 1980)